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iffraction effects on broadband radiation:
ormulation for computing total irradiance

ric L. Shirley

I present a formulation for treating diffraction effects on total irradiance in the case of a Planck source;
earlier work generally depended on calculating diffraction effects on spectral irradiance followed by
summation over spectral components. The formulation is derived and demonstrated for Fraunhofer
diffraction by circular apertures, rectangular apertures and slits, and Fresnel diffraction by circular
apertures. The prospects for treating other sources and optical systems are also discussed. © 2004
Optical Society of America

OCIS codes: 050.1960, 120.5630.
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. Introduction

iffraction of electromagnetic radiation at the edges
f apertures and lenses leads to losses or gains of flux
n radiometry that are not accounted for in geomet-
ical optics. Furthermore, practical radiometry of-
en relies on intrinsically broadband sources:
lanck-like sources, such as stars, idealized labora-

ory blackbodies, other, imperfect blackbody radia-
ors that are frequently encountered in nature and
aboratory environments, and synchrotrons. For
uch sources, assessing diffraction effects on the
osition-dependent total irradiance of one’s detector
equires summation over spectral components, each
f which is affected differently by diffraction.
Traditionally, diffraction theory is formulated for
onochromatic radiation. Thus, diffraction effects
ave been treated by first considering the spectral ir-
adiance at various wavelengths and subsequently
umming this quantity over wavelength. Diffraction
ffects on spectral irradiance are traditionally com-
uted in some version of the Kirchhoff method, which
olves the wave equation approximately by Green’s
unction techniques.1 This can lead to cumbersome
ntegrals with highly oscillatory integrands. Even af-
er such integration, the diffraction effects on spectral
rradiance can oscillate with wavelength �, so that care
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ight be needed when one is summing over wave-
ength in order to obtain the total irradiance.

Because of the above difficulties, this work circum-
ents such a two-step process as follows. The
quared Kirchhoff integral is rewritten as the Fourier
ransform of the autoconvolution of the distribution
f total path length that light can travel from source
o detector, such that path-length differences are as-
ociated with a wavelength-dependent complex
hase shift when a wave interferes with itself. The
hen-trivial integration over wavelength �or angular
ave number� weighted by source spectral radiance

s carried out, which removes almost all oscillatory
ehavior of subsequent integrands and so simplifies
heir integration. Simplified integrals over total
ath length or path-length differences are then more
asily evaluated. In this way this work also natu-
ally treats and includes all spectral components out-
ut by a broadband source simultaneously and takes
dvantage of the common spatial aspects of light
ropagation that are wavelength invariant.
The present work only considers Planck sources,

or which spatial and spectral properties of radiance
re decoupled. That is, the spectral radiance L���,
s, rs, �̂� �power emitted per unit wavelength per
teradian per projected unit area of source� may be
xpressed as the product of one factor that describes
ts spatial properties and one factor that describes its
pectral properties:

L���, Ts, rs, �̂� � f1�rs, �̂� f2��, Ts�. (1)

ere � is the wavelength, Ts is the source tempera-
ure �assumed to be the same value everywhere�, rs is
point on the source, and �̂ is the emission direction.
1 May 2004 � Vol. 43, No. 13 � APPLIED OPTICS 2609
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or a Lambertian source, the radiance does not depend
n �̂. Furthermore, for the sources we consider, the
adiance does not depend on rs, except in that f1�rs, �̂�
as one value everywhere on the area of an extended
ource and is zero elsewhere. However, if f1�rs, �̂�
ere to vary as a function of rs and �̂, the salient
spects of this work would remain valid. It remains
o be seen whether this work could be adapted for
imilar analysis involving synchrotron radiation.

This work considers a broad class of optical setups,
egarding how diffraction affects the relationship be-
ween the source temperature Ts and irradiance at a
oint rd in the detector plane, E�rd, Ts�, which is the
ower incident per unit area. The dependence of
�rd, Ts� on Ts is interwoven with its dependence on

he location of rd and on the geometrical aspects of all
ptics between and including the source and detector,
hich affect propagation of light because of
eometrical-optics effects and diffraction effects.
ote that geometrical optics describes the propaga-

ion of light in a manner that is independent of wave-
ength �, whereas the spectral dependence of
iffraction effects precludes separating the depen-
ences of E�rd, Ts� on rd and on Ts.
The most well-known diffraction problems include

raunhofer diffraction by rectangular apertures and
lits and circular apertures and Fresnel diffraction by
ircular apertures.2 In Section 3 of this work the
iffraction effects for these well-known problems are
nalyzed in particular. Concluding remarks and a
echnical appendix follow.

. Formulation

or simplicity, all that follows will rely on the scalar
resnel–Kirchhoff treatment of diffraction in the
araxial �Gaussian optics� approximation.3 This
reatment is limited, because it can fail to describe
olarization effects and various aberrations, includ-
ng the focal shift.4 However, the analogous treat-

ent of geometrical optics leads to extremely simple
pproximate expressions for the throughput of opti-
al systems, and the small-wavelength behavior of
araxial Fresnel–Kirchhoff results approaches this
imit. Therefore the difference between a paraxial
resnel–Kirchhoff result and its geometrical-optics

ig. 1. Canonical optical arrangement considered in this work.
ight emitted from an extended source passes by N optical ele-
ents before reaching a detector. The optical axis is assumed to

e the z axis. Ap., aperture.
610 APPLIED OPTICS � Vol. 43, No. 13 � 1 May 2004
ounterpart can often provide a reasonable assess-
ent of diffraction effects on the behavior of an opti-

al system.
Consider the general system shown in Fig. 1. The

axis is the optical axis, with x� y� 0. The source,
apertures �or lenses�, and the detector are posi-

ioned along that axis. Radiation emitted at rs can
ropagate to rd by passing by all N intermediate
ptical elements. If one spectral component origi-
ates at rs as a spherical wave of the form u�r� � u0
xp�ik�r� rs����r� rs�, where k� 2��� is the angular
ave number, the approximation used provides a
rescription for evaluating the resulting wave field at
d, u�k, rs, rd�:

u�k, rs, rd� �
u0

�i��N �
Ap1. . .ApN

d2r1. . .d2rN

� G�k, rs, r1�. . .G�k, rN, rd�

� exp	ik
L��r���, (2)

here

G�k, r�, r�� �
exp�ik�r� � r���

�r� � r��

� � 1
z� � z�

�exp�ik�z� � z�

�
�x� � x��

2 � � y� � y��
2

2� z� � z��
�	 (3)

s the k-dependent free-space propagator or Green’s
unction for the wave field between two points. Here
point’s Cartesian coordinates are denoted r� � x�x̂
y�ŷ � z�ẑ. Also, we always assume z� � z� and

hat the difference in z coordinates is much larger
han the differences in x or y coordinates. The factor

exp	ik
L��r��� � exp�ik �
��1

N �� x�
2 � y�

2

2f�
�� (4)

an be used to introduce a finite focal length f� that
an convert an aperture into a focusing optic. Cor-
espondingly, an aperture effectively has � f�� � �.
ntegration of r� is understood to run over the area of
ptical element �. Also, note that the units of u�k,
s, rd� and u0 differ, because the units of u0 have an
dditional factor of length.
Let us now introduce the abbreviations

L��r�� � zd � zs

�
�x1 � xs�

2 � � y1 � ys�
2

2� z1 � zs�
� . . .

�
�xd � xN�

2 � � yd � yN�
2

2� zd � zN�

� 
L��r �, (5)
�
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hich �approximately� is a path length from rs to rd
ampled in Eq. �2�, and

� � � z1 � zs�� z2 � z1�. . .� zd � zN�. (6)

e also define

f �l, rs, rd� � �
Ap1

d2r1. . . �
ApN

d2rN
	l � L��r���, (7)

hich describes the frequency of occurrence of a path
ength equal to l in Eq. �2�. This gives

u�k, rs, rd� �
u0

��i��N �
��

�

dlf �l, rs, rd�exp�ikl �, (8)

hich involves the Fourier transform of f �l, rs, rd�
ith respect to l. Squaring yields

�u�k, rs, rd��2 �
�u0�2

�2�2N �
��

�

dl �
��

�

dl�f �l, rs, rd�

� f �l�, rs, rd�exp	ik�l � l���, (9)

hich involves the Fourier transform of the autocon-
olution of f �l, rs, rd�, all with respect to l. Finally,
he ratio �u�k, rs, rd��u0�2 is given by the function

T�k, rs, rd� � �u�k, rs, rd��u0�2

�
k2N

�2��2N�2 �
��

�

dl �
��

�

dl�f �l, rs, rd�

� f �l�, rs, rd�exp	ik�l � l���

�
k2N�2

�2��2N�2 �
��

�

dl �
��

�

dl�
df �l, rs, rd�

dl

�
df �l�, rs, rd�

dl�
exp	ik�l � l���. (10)

n many cases there is a limit,

T0�rs, rd� � lim
k3�

T�k, rs, rd��Illum. (11)

f this limit exists, it appears to be the geometrical-
ptics counterpart of T�k, rs, rd� in the illuminated
egion of the z � zd plane. As an example, consider
he case of one optical element between the source
nd detector. In such a case, we may abbreviate
1 � zs � ds and zd � z1 � dd. If the optical element
s nonfocusing, we have T0�rs, rd� � �dd � ds�

�2. If
he optical element is a lens with focal length f, we
ave

T0�rs, rd� �
1

ds
2dd

2 � 1
ds

�
1
dd

�
1
f �

�2

. (12)

t � f � � �, we have the previous result, and we have
he result T0 � ds

�2 for dd 3 0, independent of f.
therwise, T0�rs, rd� varies in size as the area of the

lluminated region varies inversely as a function of
. Near the focal plane, T �r , r � diverges as the
d 0 s d
lluminated region shrinks to a point, so that a k3 �
imit for T�k, rs, rd� does not exist.

The total and spectral irradiance at rd can be ex-
ressed as the sum of contributions from each area
lement of the extended source, dAs, according to

E�rd, Ts� � �
Source

d2rs

dE�rd, Ts�

dAs

� �
Source

d2rs �
0

�

d�
dE���, rd, Ts�

dAs
. (13)

or an extended-area incoherent source, there is an
ncremental spectral irradiance dE���, rd, Ts� related
o a source area element, dAs. This equals the irra-
iance commensurate with a fictitious point source
imes the effective density of point sources per unit
rea, �. If �u0�2 is the spectral power emitted per
oint source per steradian, one has L���, Ts� � ��u0�2.
he incremental irradiance is therefore dE���, rd, Ts�
��u�k, rs, rd��

2dAs, giving

dE���, rd, Ts�

dAs
� �T�k, rs, rd��u0�2

� T�k, rs, rd�L���, Ts�. (14)

ence T�k, rs, rd� is the ratio of dE���, rd, Ts��dAs to
he source spectral radiance. Therefore we have

dE�rd, Ts�

dAs
� �

0

�

d�T�k, rs, rd�L���, Ts�

�
�c1

� �
0

� d�
�5

T�k, rs, rd�

exp	c2���Ts�� � 1
, (15)

here c1 and c2 are the first and second radiation
onstants, respectively. The factor � is the source
missivity, which is unity for an ideal blackbody and
hich we shall assume to be wavelength indepen-
ent. It is more useful to express this result by us-
ng the angular wave number k, yielding

dE�rd, Ts�

dAs
�

�c1

16�5 �
0

�

dkk3 T�k, rs, rd�

exp��k� � 1
, (16)

here I have introduced

� �
c2

2�Ts
�

�c
kB Ts

. (17)

ithout diffraction effects, the irradiance expected
rom geometrical optics is given by

dE0�rd, Ts�

dA
� �3��4��c1

8�5�4 �T0�rs, rd�. (18)

s

1 May 2004 � Vol. 43, No. 13 � APPLIED OPTICS 2611
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2

ere ��z� � ¥n�1
� n�z is the Riemann � function.

hen diffraction effects are taken into account, we
ave

dE�rd, Ts�

dAs
�

�c1

16�5	�2��2N�2�

� �
��

�

dl �
��

�

dl�f �l, rs, rd� f �l�, rs, rd�

� �
0

�

dkk3�2N exp	ik�l � l���
exp��k� � 1

�
�3 � 2N�!�c1

16�5	�2��2N�2�

� �
��

�

dl �
��

�

dl�f �l, rs, rd� f �l�, rs, rd�

��
n�1

� 1
	n� � i�l � l���2N�4 . (19)

ntegration by parts with respect to l and l� also gives

dE�rd, Ts�

dAs
�

�c1

16�5	�2��2N�2�

� �
��

�

dl �
��

�

dl�
df �l, rs, rd�

dl

�
df �l�, rs, rd�

dl� �
0

�

dkk1�2N

�
exp	ik�l � l���
exp��k� � 1

�
�1 � 2N�!�c1

16�5	�2��2N�2�

� �
��

�

dl �
��

�

dl�
df �l, rs, rd�

dl

�
df �l�, rs, rd�

dl�

��
n�1

� 1
	n� � i�l � l���2N�2 . (20)

hese integrations are all symmetric under exchange
f l and l�, so only the real parts of integrals survive.
lso, results are unaffected if the function f �l, rs, rd�

s translated with respect to l.
The last result can be especially useful, because f �l,

s, rd� can have the property

d
dl �f �l, rs, rd�

�l � l �N�1� � g
�l � l0� � b�l, rs, rd�, (21)

0
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here b�l, rs, rd� is zero except for certain ranges of
. In the case of N � 1, an assumption to be made
or the remainder of this section, some rearrange-
ent gives

dE�rd, Ts�

dAs
�

3�c1

64�7ds
2dd

2 �
��

�

dlS��, l �

� �
��

�

ds�df �s, rs, rd�

ds �
� �df �s � l, rs, rd�

ds � , (22)

here the function S��, l � is easy to evaluate and is
iscussed in Appendix A.
This manner of expressing the last result extracts

ll spectral aspects �for a thermal source, appearing
ere by means of the parameter ��, from the inner-
ost integral, which becomes a purely geometric en-

ity. Such a separation of spectral and spatial
spects of the flow of radiation is highly advanta-
eous, because the spatial aspects do not depend on
avelength and hence can be treated simultaneously

or all spectral components. This is the main result
f this work. If the integration over s is performed
nce for all l, the total irradiance may be deduced by
t most a single integration over l. Because the in-
egrands are not highly oscillatory, numerical inte-
ration can be practical as an alternative to analytic
ntegration.

Typically, the parameter g has one value in the
lluminated region and is zero otherwise in the case
f Fresnel diffraction, and its contributions to df �l,
s, rd��dl are related to the geometrical wave in the
oundary-diffraction-wave formulation of Kirchhoff
iffraction theory.5,6 In that case the parameter l0
s an extremal value of l. Contributions to dE�rd,
s��dAs arising from the product of two geometrical-
ave terms are the same as what one would have
ccording to geometrical optics, and typically hav-
ng a nonzero g is synonymous with the existence
f the limit, T0�rs, rd�. This is clear from Eq. �10�,
t least for the case of N � 1, where the factor
utside of the integral has a k 3 � limit and con-
ributions from b�l, rs, rd� and�or b�l�, rs, rd� in
he integrand do not contribute upon integration in
he k 3 � limit if such functions are well behaved
nd, in particular, do not have 
-function-like con-
ributions. For other, pathological cases, closer ex-
mination is necessary to interpret the present
ssertions.
Contributions to df �l, rs, rd��dl from b�l, rs, rd� are

elated to the boundary-diffraction wave. Their
ontributions to dE�rd, Ts��dAs are synonymous
ith diffraction effects, and this permits a clear

dentification of diffraction effects even at the start
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ters indicated.
f a calculation. In particular, in the case of N � 1
e have

dE�rd, Ts�

dAs
�

3�c1 g2S��, 0�
64�7ds

2dd
2 �

3�c1 g
32�7ds

2dd
2

� �
��

�

dlS��, l �b�l0 � l, rs, rd�

�
3�c1

64�7ds
2dd

2 �
��

�

dlS��, l �

� �
��

�

dsb�s, rs, rd�b�s � l, rs, rd�

�
dE0

dAs
	IG � IX��, rs, rd�

� IB��, rs, rd��. (23)

he first term is the one that would arise in geomet-
ical optics, while the two remaining terms are direct
onsequences of diffraction and are expressed in
erms of the functions IX��, rs, rd� and IB��, rs, rd�
hat have been introduced. Because IX and IB are
lways functions of the same arguments, their argu-
ents are suppressed in much of what follows.
lso, even symmetry with respect to l of the inner

ntegrand contributing to IB permits one to integrate
ver l � 0 only and double the result. Furthermore,
n the integral contributing to IX, b�l0 � l, rs, rd� may
e identically zero for all l � 0 or all l � 0. IG is one
n the illuminated region and zero otherwise, and
enceforth dE0�dAs is assumed to denote the
eometrical-optics value in the illuminated region.
lthough one might anticipate that analogous results
uch as those just discussed can also be true for N �
, such an assertion remains to be investigated.

. Application

et us now seek to apply the above formulation to
ssess diffraction effects on irradiance at the detector
n the N � 1 case. Without additional loss of gen-
rality, in what follows the area element of the source
hat illuminates a diffracting aperture is assumed to
e centered on the optical axis.

. Fraunhofer Diffraction

n the case of Fraunhofer diffraction, it is convenient
o express f �l, rs, rd� and all related quantities in
erms of the direction cosines from the center of the
iffracting aperture to rd: �x � xd�dd and �y � yd�
d. The path length traveled by light from the
ource through the aperture to the detector plane is
iven by

L�rs, r1, rd� � ds � dd � �x x1 � �y y1

� l � � x � � y . (24)
0 x 1 y 1
et us henceforth reset the constant l0 to zero, as we
re allowed to do. Using the identity

�
��

�

dlf �l, rs, rd� � AAp1, (25)

here AAp1 is the area of the diffracting aperture,
nspection of Eq. �19� already gives this general result
or irradiance on the optical axis:

dE�rd, Ts�

dAs
� �0 �

15��6��c1 AAp1
2

8�7ds
2dd

2�6 . (26)

. Fraunhofer Diffraction by a Rectangular Aperture

igure 2 depicts a rectangular aperture with width
rx along the x direction and height 2ry along the y
irection. The dashed line indicates the direction
orresponding to a possible pair of values of direction
osines ��x, �y�. Dotted lines are constant-l contours
n the z � z1 �aperture� plane. For convenience, l is
efined to be zero at the center of the aperture.
ther values of l are indicated on each contour. It is
elpful to introduce two parameters, l� � ����xrx� �
�yry���. From inspection, we see that f �l, rs, rd� is
ero for l � �l�, rises steadily for �l� � l � �l�, is
onstant for �l� � l � l�, decreases steadily in the
ame manner for l� � l � l�, and is zero for l � l�.
sing the sum rule of Eq. �25�, we may deduce f �l, rs,

d� � AAp1��l� � l�� for �l� � l � l�, giving df �l, rs,
d��dl��AAp1��l�

2 � l�
2 � ��B for�l�� l��l� and

� � l � l�, respectively.
Using Eq. �20�, we have
ig. 2. Rectangular aperture with several geometrical parame-
1 May 2004 � Vol. 43, No. 13 � APPLIED OPTICS 2613
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he term shown corresponds to the first limits of
ntegration shown, and terms not shown follow ac-
ordingly. Gathering all terms and simplifying, in-
luding using

1
�a � ib�2

�
1

�a � ib�2
�
�a � ib�2 � �a � ib�2

�a2 � b2�2

�
2�a2 � b2�

�a2 � b2�2

�
2

a2 � b2 �
4b2

�a2 � b2�2
, (28)

e arrive at

dE�rd, Ts�

dAs
�

�c1 B2

16�7ds
2dd

2�2 	��2� � 4�2

� g�2��l� � l����� � 4�2

� g�2��l� � l����� � 2�2g�4�l����

� 2�2g�4�l�����. (29)

ere we have introduced g�z� � S1�z� � 2z2S2�z�;
1�z� and S2�z� and a means to evaluate these func-

ions are described in Appendix A. A contour plot of
his result as a function of ��x

2rx
2 � �y

2ry
2�1�2�� is shown

ig. 3. �dE�dAs���0 for case of Fraunhofer diffraction by a rect-
ngular aperture along three lines in the ��x, �y� plane as discussed
n the text.

dE�rd, Ts�

dAs
�

3�c1 B2

32�7ds
2dd

2��
�l�

�l�
dl �

�l�

�l�
dl� � �

�l�

�l

��
n�1

� 1
	n� � i�l � l���4

�
�c1 B2

64�7ds
2dd

2 ���
n�1

� 1
	n� � i�l � l���2
614 APPLIED OPTICS � Vol. 43, No. 13 � 1 May 2004
n Fig. 3 for � � 0.01 mm, rx � 1 mm, ry � 2 mm. It
s normalized to give a result of unity for �x � �y � 0.
urves are shown for ��yry����xrx� � tan  , with tan
� 0, tan  � 0.5, and tan  � 1.
If we have �y � 0, then we have l� � l� � l�, and the

bove results simplify to

df �l, rs, rd�

dl
� �AAp1

2l� �
�l � l�� � �AAp1

2l� �
�l � l��, (30)

dE�rd, Ts�

dAs
�

3�c1 AAp1
2

128�7ds
2dd

2l�2�
n�1

� � 2
�n��4

�
1

�n� � 2il��4

�
1

�n� � 2il��4�
�

3�c1 AAp1
2

128�7ds
2dd

2l�2�4 	2��4� � S�1, 2l�����.

(31)

n evaluating such results, care must be taken for
� ! l� in Eq. �29� and small l� in Eq. �31�, because the
niteness of dE�rd, Ts��dAs can depend on mutual
ancellation of two or more divergent terms.

. Fraunhofer Diffraction by a Long, Narrow Slit

iffraction by a slit is closely related to diffraction by
rectangle. When the slit is very long, the Fraun-

ofer approximation is only appropriate along the
arrow direction, whereas the paraxial Fresnel ap-
roximation may be used along the long direction.
ne therefore has, for a slit parallel to the y axis,

L�rs, r1, rd� � l0 � �x x1 � � 1
2ds

�
1

2dd
�y1

2, (32)

nd we again immediately reset l0 to zero. Here,
erms linear in y1 may be dropped when one takes the
imit of an infinitely long slit, as we shall do. In
lace of Eq. �8�, we shall use

u�k, rs, rd� �
u0

i�ds dd ���
�

dlf1�l, rs, rd�exp�ikl �

� �
��

�

dy1 exp�ik� 1
2ds

�
1

2dd
�y1

2� ,

(33)

�
�l�

�l�
dl� � �

�l�

�l�
dl �

�l�

�l�
dl� � �

�l�

�l�
dl �

�l�

�l�
dl��

l�

l�	

l���l�

l���l�

� . . .� . (27)
�

dl
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here we have

f1�l, rs, rd� � �
�rx

�rx

dx1
	l � ���x x1��

� "���x rx� � l �"�l � ��x rx�����x�. (34)

his leads to

T�k, rs, rd� �
k

2�ds dd�ds � dd�

� �
��

�

dl �
��

�

dl�f1�l, rs, rd� f1�l�, rs, rd�

� exp	ik�l � l���. (35)

sing Eq. �16�, we arrive at

dE�rd, Ts�

dAs
�

�c1

32�6ds dd�ds � dd�

� �
��

�

dl �
��

�

dl�f1�l, rs, rd� f1�l�, rs, rd�

� �
0

� dkk4 exp	ik�l � l���
exp��k� � 1

�
3�c1

4�6ds dd�ds � dd�

� �
��

�

dl �
��

�

dl�f1�l, rs, rd� f1�l�, rs, rd�

��
n�1

�

	n� � i�l � l����5

�
�c1

16�6ds dd�ds � dd�

� �
��

�

dl �
��

�

dl�
df1�l, rs, rd�

dl

�
df1�l�, rs, rd�

dl� �
n�1

�

	n� � i�l � l����3.

(36)

he derivatives are given by

df1�l, rs, rd�

dl
� 	
�l � ��x rx�� � 
�l � ��x rx������x�.

(37)

ontinuing analysis in the same way that was used
or treating Fraunhofer diffraction by a rectangular
perture, we obtain

dE�rd, Ts�

dAs
�

�c1 h� z�
16�6ds dd�ds � dd��x

2�3 , (38)

ith

h� z� � 2��3� ��
� 1
�n � iz�3

��
� 1
�n � iz�3

(39)

n�1 n�1
nd z � 2�xrx��. The function h�z�, universal for all
nfinitely long, narrow slits, is plotted divided by z2 in
ig. 4, and h�z� is tabulated for several values in
able 1. Note that we have h�0� � 0, h�z� ! 12��5�z2

or small z, and h��� � 2��3�.

. Fraunhofer Diffraction by a Circular Aperture

or a circular aperture of radius R, the irradiance in
he detector plane depends only on � � ��x

2 � �y
2�1�2.

oting that we have

L�rd, r1, rs� � l0 � x1�x � y1�y, (40)

nd x1
2 � y1

2 � R2 on the aperture, we reset l0 to zero
nd can easily obtain

f �l, rs, rd� �
2
�2 �R

2�2 � l2�1�2 (41)

or �l�� R�, as well as f �l, rs, rd� � 0 otherwise. This
ives, when appropriate,

b�l, rs, rd� � �
2l

�2�R2�2 � l2�1�2 . (42)

ig. 4. Universal function h�z� relevant for the case of Fraunhofer
iffraction by a rectangular slit, plotted as h�z��z2 versus z.

Table 1. Function h�z� Versus z

z h�z� z h�z� z h�z�

0.0 0.0000 1.2 2.7871 5.5 2.4366
0.1 0.1215 1.4 2.7509 6.0 2.4315
0.2 0.4527 1.6 2.7029 6.5 2.4275
0.3 0.9105 1.8 2.6577 7.0 2.4243
0.4 1.3986 2.0 2.6191 7.5 2.4217
0.5 1.8407 2.5 2.5505 8.0 2.4196
0.6 2.1953 3.0 2.5088 10.0 2.4141
0.7 2.4522 3.5 2.4823 15.0 2.4085
0.8 2.6216 4.0 2.4646 20.0 2.4066
0.9 2.7219 4.5 2.4523 100.0 2.4042
1.0 2.7727 5.0 2.4433 � 2.4041
1 May 2004 � Vol. 43, No. 13 � APPLIED OPTICS 2615
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uccessive steps feature various substitutions and
earrangements, with key changes of variables being
� s��R� � l�2� and y � l��2R��. Using

�1 � y�2x2 � y2

1 � y
� �1 � 2y

1 � y � � �1 � y�

� �1 � �1 � y
1 � y�

2

x2� , (44)

e obtain

dE
dAs

�
3�c1 R2

2�7ds
2dd

2�2 �
0

1

dyS��, 2 R�y�

� ��1 � 2y
1 � y �K(�1 � y

1 � y�
2)

� �1 � y�E(�1 � y
1 � y�

2)� , (45)

here complete elliptic integrals of the first and sec-
nd kind are defined by

K�u� � �
0

1 dt
	�1 � t2��1 � ut2��1�2 , (46)

E�u� � �
0

1

dt�1 � ut2

1 � t2 �1�2

, (47)

ith the indicated convention regarding the meaning
f their argument. Introducing # � 2R���, and
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rom transformation formulas for elliptic integrals,
ne finds

dE
dAs

�
3�c1 R2

4�7ds
2dd

2�2�4 �
0

1

dyS�1, #y�	K�1 � y2�

� 2E�1 � y2��

�
3�c1 AAp1

2

�9ds
2dd

2#2�6 �
0

1

dyS�1, #y�	K�1 � y2�

� 2E�1 � y2��. (48)

ecause one may derive

Am � �
0

1

dyy2mK�1 � y2� �
�

4 �$�m � 1�2�
$�m � 1� �2

, (49)

Bm � �
0

1

dyy2mE�1 � y2�

�
�

4 �$�m � 1�2�$�m � 3�2�
$�m � 1�$�m � 2� � , (50)

or small # we have

dE
dAs

�
3�c1 AAp1

2

�9ds
2dd

2#2�6 �
m�0

�

	�2��2msm�Am � 2Bm��#
2m,

(51)

hich is valid for # � 1. The �sm coefficients are
ound in Appendix A. The factor �2��2m arises be-
ause the argument z in Appendix A is equal to 2�#y
n this case. For somewhat larger #, direct numer-
cal integration of Eq. �48� may be done. For very
arge #, the asymptotic behavior of %�#� � �dE�dA ��
dE
dAs

�
3�c1

8�7ds
2dd

2�4 �
0

2 R�

dlS��, l � �
�R��l�2

R��l�2 ds�s � l�2��s � l�2�
	�R� � s � l�2��R� � s � l�2��R� � s � l�2��R� � s � l�2��1�2

�
3�c1

8�7ds
2dd

2�4 �
0

2 R� dlS��, l �
R� � l�2 �

�1

1 dx	�R� � l�2�2x2 � l2�4�
(�1 � x2��	�R� � l�2���R� � l�2��2 � x2)1�2

�
3�c1

8�7ds
2dd

2�4 �
0

2 R� dlS��, l �
R� � l�2 �

�1

1 dx	�R� � l�2�2x2 � l2�4�
(�1 � x2��1 � 	�R� � l�2���R� � l�2��2x2)1�2

�
3�c1

8�7ds
2dd

2�4 �
0

2 R� dlS��, l �
2 R� � l �

0

1 dx	�2 R� � l �2x2 � l2�

(�1 � x2��1 � 	�2 R� � l ���2 R� � l ��2x2)1�2

�
3�c1 R2

2�7ds
2dd

2�2 �
0

1 dyS��, 2 R�y�
1 � y �

0

1 dx	�1 � y�2x2 � y2�

(�1 � x2��1 � 	�1 � y���1 � y��2x2)1�2 . (43)
s
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0, determined by using properties of hypergeomet-
ic functions, is helpful:

%�#� �
504��3�
�7#3 �

378 loge#

�7#5

�
63�6& � 12 loge2 � 11�

�7#5 � · · ·. (52)

he function %�#� is plotted in Fig. 5 and tabulated in
able 2. Note that we have %�0� � 1.

. Fresnel Diffraction

n the case of Fresnel diffraction, it is expedient to
elate dE�dAs to the value of dE0�dAs in the illumi-
ated region, as is done in Eq. �23�. Let us continue
o assess the contribution to irradiance by an area
lement centered on the optical axis. This area ele-
ent is assumed to be at rs� �0, 0,�ds�, and we shall

onsider the irradiance at rd � �xd, yd, dd�. A line
egment between rs and rd intersects the z � 0 plane
t �xi, yi, 0�, with xi � dsxd��ds � dd� and yi � dsyd�

ig. 5. Universal behavior of %�#� for the case of Fraunhofer
iffraction by a circular aperture, as a function of angular param-
ter # �solid curve�, and asymptotic result �dashed curve�.

Table 2. Function ���

# %�#� # %�#� #

0.0 1.000000 2.0 0.027678 4.0
0.2 0.903648 2.2 0.020738 4.2
0.4 0.683744 2.4 0.015904 4.4
0.6 0.459616 2.6 0.012446 4.6
0.8 0.292239 2.8 0.009913 4.8
1.0 0.184166 3.0 0.008019 5.0
1.2 0.118206 3.2 0.006576 5.2
1.4 0.078239 3.4 0.005458 5.4
1.6 0.053589 3.6 0.004579 5.6
1.8 0.037937 3.8 0.003878 5.8
ds � dd�. A total path length is reckoned according
o

L�rs, r1, rd� � ds � dd �
xd

2 � yd
2

2�ds � dd�

� 	�x1 � xi�
2 � � y1 � yi�

2�� 1
2ds

�
1

2dd
�

� l0 � C	�x1 � xi�
2 � � y1 � yi�

2�, (53)

here a parameter C has been introduced.

. Fresnel Diffraction by a Circular Aperture

circular aperture of radius R is assumed to be
entered around the z axis. In this case x1 and y1
hould sample the aperture. By symmetry, we may
ntroduce ' � �xi

2 � yi
2�1�2, and deal solely with '.

For rd in the illuminated region, where we have ' �
, l0 may denote the smallest value taken by L�rs, r1,

d�, and L�rs, r1, rd� has increasingly larger values for
1 on increasingly larger circular contours centered
round ri. Freely setting l0 to zero, we have

L�rs, r1, rd� � C	�x1 � xi�
2 � � y1 � yi�

2� � C�2, (54)

here we have introduced a new variable, �. An
ntire circular contour is sampled by r1 for � � R �
. For R� '� � �R� ', the sampled fraction of the
ontour is ���, where we have

� � cos�1��2 � '2 � R2

2'� � . (55)

ence, for l � C�R � '�2, we have

f �l, rs, rd� � ��C, (56)

hereas for C�R � '�2 � l � C�R � '�2 we have

f �l, rs, rd� � ��C. (57)

s l increases over this range, � decreases from � to
ero. For l � C�R � '�2, we have

f �l, rs, rd� � 0. (58)

dE�dAs���0 Versus �

%�#� # %�#� # %�#�

003313 6.0 0.000959 8.0 0.000400
002853 6.2 0.000868 8.2 0.000371
002474 6.4 0.000788 8.4 0.000345
002159 6.6 0.000718 8.6 0.000321
001895 6.8 0.000655 8.8 0.000300
001673 7.0 0.000600 9.0 0.000280
001484 7.2 0.000551 9.2 0.000262
001323 7.4 0.000507 9.4 0.000246
001184 7.6 0.000468 9.6 0.000230
001064 7.8 0.000432 9.8 0.000216
� � �

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1 May 2004 � Vol. 43, No. 13 � APPLIED OPTICS 2617
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or rd in the shadow region, where we have ' � R, we
ave

f �l, r , r � � 0 (59)
s d

w

L

w

H

1

r
w
t
t
z
a

or l � C�' � R�2 or l � C�' � R�2, whereas we have

f �l, rs, rd� � ��C (60)

or C�' � R�2 � l� C�R� '�2. Here � is given by the
ame expression as in the illuminated region. As l
ncreases over this range, � starts at zero, increases to
ome maximum value, and then decreases to zero.
When relevant, we have g � ��C. Also, whatever

he case, for C�' � R�2 � l � C�' � R�2, we may use
he chain rule to obtain

b�l � �
1
C

d�
dl

�
1
C

d�
d�

d�
dl

�
1

2�C2

d�
d�

. (61)

ifferentiating �with respect to � and simplifying the
esult leads to

b�l � �
A � Bl

l	�l � l1��l2 � l ��1�2 , (62)

here we have

A �
'2 � R2

2
, B �

1
2C

,

l1 � C�' � R�2, l2 � C�' � R�2. (63)

As expected, we have IG � 1 in the illuminated
egion and IG � 0 otherwise. Next, we have

IX �
�4C
���4� �

l1

l2 dlS��, l ��A � Bl �
l	�l � l1��l2 � l ��1�2 . (64)

he integration may be carried out numerically with
elative ease, particularly with a change of the vari-
ble of integration to �, where we have l � l1 � �l2 �

1��1 � cos ���2, and use of Gauss–Legendre quadra-
ure. Finally, we have
1
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e may introduce a� � �l2 � l1 � l ��2 and b� � �l2 �

1 � l ��2, so that if we have s� a�x� b�, we have x�
1 at s � l1 and x � �1 at s � l2 � l. This leads

o

here we have introduced

n1 �
A

Ba�
�

b�
a�

, n2 �
A

Ba�
�

b�
a�

�
l

a�
,

d1 �
b�
a�

, d2 �
b�
a�

�
l

a�
, ( �

1
1 � l�a�

. (67)

ikewise, we have

�n1 � x��n2 � x�
�x � d1��x � d2�

� 1 �
1

d2 � d1
� )1

x � d1
�

)2

x � d2
� ,

(68)

here we have introduced

)1 � �d1 � n1��d1 � n2�,

)2 � �d2 � n1��d2 � n2�. (69)

owever, the replacement

�
1

d2 � d1
� )1

x � d1
�

)2

x � d2
�

3 1 �
1

d2 � d1
� d1)1

d1
2 � x2 �

d2)2

d2
2 � x2� (70)

etains only the part of this expression that is even
ith respect to x, whereas its odd part does not con-

ribute to results. After such a replacement, we may
runcate the integration range for x to being from
ero to one, if a compensating prefactor of two is
ffixed to the result. Hence, we have
IB �
�4C2

�2��4� �
0

l2�l1
dlS��, l ��

l

l2�l

ds
�A � Bs��A � Bs � Bl �

s�s � l �	�s � l1��s � l � l1��l2 � s��l2 � s � l ��1�2 . (65)
IB �
�4C2

�2��4�a� �
0

l2�l1
dlS��, l � � �

�1

�1

dx
�A�a� � Bx � Bb��a���A�a� � Bx � Bb��a� � Bl�a��

�x � b��a���x � b��a� � l�a����1 � x2�	�1 � l�a��2 � x2�1�2

�
�4B2C2(

�2��4�a� �
0

l2�l1
dlS��, l � �

�1

�1 dx�n1 � x��n2 � x�
�x � d1��x � d2�	�1 � x2��1 � (2x2��1�2 , (66)
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here

*�d2, (2� � �
0

1 dt
�1 � d2t2�	�1 � t2��1 � (2t2��1�2 (72)

s a complete elliptic integral of the third kind �with
he indicated convention for the meaning of its argu-
ents�. The remaining single integration over l
ay be done numerically with relative ease, with the

ame change of variables and quadrature scheme as
or IX.

Figure 6 shows results for �dE�dAs���dE0�dAs� for
� 0.1 mm, ds� dd� 100 mm, and R� 10 mm �solid

ine�.

. Conclusion

his work has presented a means by which one can
ompute diffraction effects on total irradiance for a
roadband source. While much of the work may be
dapted to a variety of sources, in the immediate
ontext the methodology developed has been done so
ith Planck sources in mind. I have successfully
emonstrated the capacity for treating Fraunhofer
iffraction by rectangular and circular apertures and
lits, and Fresnel diffraction by circular apertures.
urthermore, a general mathematical framework

ig. 6. Diffraction effects on total irradiance because of a circular
perture for a geometry discussed in the text versus distance from
he optical axis, rd. The solid curve shows results of numerical
alculations, and the dashed line shows what is expected from
eometrical optics.

IB �
2�4B2C2(

�2��4�a� �
0

l2�l1
dlS��, l ���

0

1 dx
	�1 � x2��1 � (2x

� � )2�d2

d2 � d1
� �

0

1 dx
�1 � d2

�2x2�	�1 � x2��1 � (2x2��

�
2�4B2C2(

�2��4�a� �
0

l2�l1
dlS��, l ��K�(2� � � )1�d1

d2 � d1
�*
nd many functions and means to evaluate them
ave been presented that will also be useful in other
ontexts. Two topics of current interest to examine
n due course are treating multiple diffraction and
iffraction of synchrotron radiation.

ppendix A: Evaluating S��, l� and Sm�z�

he sum

S��, l � ��
n�1

�

	�n� � il ��4 � �n� � il ��4� (A1)

nd related functions arise frequently in this work.
ote that one may write

S��, l � � l�4S���l, 1� � ��4S�1, l���, (A2)

nd each manner of expressing S��, l �may be helpful
n some context. Using

b � il ��4 � �b � il ��4

�
�b � il �4 � �b � il �4

�b2 � l2�4

�
2�b4 � 6b2l2 � l4�

�b2 � l2�4

�
2	�b2 � l2�2 � 8l2�b2 � l2� � 8l4�

�b2 � l2�4

� 2��b2 � l2�2 �
16l2

�b2 � l2�3
�

16l4

�b2 � l2�4
, (A3)

e find

S��, l � � 2 �
n�1

�

	�n��2 � l2��2 � 16l2�
n�1

�

	�n��2

� l2��3 � 16l4�
n�1

�

	�n��2 � l2��4. (A4)

efining z � 2�l��, we have

S��, l � � 2�2����4S2� z� � 16l2�2����6S3� z�

� 16l4�2����8S4� z�

� 2�2����4	S2� z� � 8z2S3� z�

� 8z4S4� z��, (A5)

ith

Sm� z� ��
n�1

�

�4�2n2 � z2��m. (A6)

2 � � )1�d1

d2 � d1
� �

0

1 dx
�1 � d1

�2x2�	�1 � x2��1 � (2x2��1�2

2, (2� � � )2�d2

d2 � d1
�*�d2

�2, (2�� , (71)
2��1�

1�2�
�d1

�
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rom Knopp,7 we have

S1� z� �
1
2z � 1

1 � exp��z�
�

1
z

�
1
2� , (A7)

nd S2�z� to S4�z�may be found by successively using

Sm�1� z� � �
1

2mz
d
dz

Sm� z�. (A8)

Letting f � 1�	1 � exp��z�� � exp�z��	exp�z� � 1�,
e may observe

f� � df�dz

� exp� z��	exp� z� � 1� � exp�2z��	exp� z� � 1�2

� f � f 2,

f + � d2f�dz2 � � f � f 2��1 � 2f � � f � 3f 2 � 2f 3,

f, � d3f�dz3

� � f � f 2��1 � 6f � 6f 2�

� f � 7f 2 � 12f 3 � 6f 4. (A9)

Next we can arrive at the following expressions by
uccessive differentiation, while we use the above
esults for f and its derivatives:

S2� z� � �
1

4z2 f� �
1

4z3 f �
1

2z4 �
1

8z3 ,

S3� z� �
1

16z3 f + �
3

16z4 f� �
3

16z5 f �
1

2z6 �
3

32z5 ,

S4� z� � �
1

96z4 f, �
1

16z5 f + �
5

32z6 f� �
5

32z7 f �
1

2z8

�
5

64z7 . (A10)

ombining these to obtain S��, l �, we find

S��, l � � �2�2����4� 1
2z4 �

f,
12� � �l�4 � O�e�z�.

(A11)

his form is suitable except when z is much smaller
han 1. Using

�4�2n2 � z2��m �
1

�4�2�m�k�0

�

�
�m � 1 � k�!	�z2��4�2��k

k!�m � 1�!n2m�2k ,
(A12)
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e also have

Sm� z� �
1

�4�2�m�k�0

�

�
�m � 1 � k�!��2m � 2k�	�z2��4�2��k

k!�m � 1�!

��
k�0

�

sm,kz
2k, (A13)

here ��N� � ¥n�1
� n�N is the Riemann zeta function,

nd we have introduced coefficients �sm,k. This lat-
er expression for Sm�z� is helpful for small z, where
t converges after very few terms. To lowest order,
e have

S1� z� �
1

24
�

z2

1440
�

z4

60480
� . . . ,

S2� z� �
1

1440
�

z2

30240
�

z4

806400
� . . . ,

S3� z� �
1

60480
�

z2

806400
�

z4

15966720
� . . . ,

S4� z� �
1

2419200
�

z2

23950080
�

691z4

261534873600

� . . . ,

��, l � �
32�4

�4 � 1
1440

�
z2

6048
�

z4

69120
� . . . ,� ,

(A14)
r

S��, l � �
32�4

�4 �s2,0 � z2�s2,1 � 8s3,0�

��
k�2

�

z2k�s2,k � 8s3,k�1 � 8s4,k�2��
��

k�0

�

sk z2k, (A15)

here we have introduced coefficients �sk. All of
hese series converge for �z� � 2�, i.e., �l��� � 1.
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